

Draft OHAT Approach Part 2 Confidence in the Body of Evidence Through Integrating the Evidence

Andrew Rooney, Ph.D.

Division of the National Toxicology Program,

Office of Health Assessment and Translation (OHAT)

Web-Based Informational Meeting April 23, 2013 12:00 - 4:00PM EDT

Draft OHAT Approach for Systematic Review and Evidence Integration for Literature-Based Health Assessments

This Presentation will focus on Steps 5-7

Step 2: Search for and select studies

Step 3: Extract data from studies

Step 4: Assess individual study quality

Step 5: Rate confidence in body of evidence

Step 6: Translate confidence ratings into level of evidence for health effect

Draft OHAT Approach for Systematic Review and Evidence Integration for Literature-Based Health Assessments

This Presentation will focus on Steps 5-7

Step 1: Prepare topic

Step 2: Search for and select studies

Step 3: Extract data from studies

Step 4: Assess individual study quality

Step 5: Rate confidence in body of evidence

How confident are you that the findings from a group of studies reflect the true relationship between exposure to a substance and an effect?

Step 6: Translate confidence ratings into level of evidence for health effect

Step 7: Integrate evidence to develop hazard identification conclusions

Integrate the evidence to develop hazard identification conclusions:

- by combining evidence streams (i.e., human and animal data)
- with consideration of other relevant data such as mechanistic studies

Confidence Rating

– How confident are you that findings from a group of studies reflect the true relationship between exposure to a substance and an effect?

Existing Methods

- The GRADE approach is a widely accepted method for rating confidence in a body of evidence
 - No guidance for animal studies
 - No guidance for in vitro studies
 - All observational human studies are given the same initial low quality (e.g., case-report = prospective cohort study)

Why GRADE?

- Developed by broad group of international guideline developers in the area of healthcare
- Clear presentation of elements considered for downgrading or upgrading confidence in body of evidence
 - Framework for documenting scientific judgment decisions
 - Elements cover Bradford Hill causality considerations
 - Practitioners engage in ongoing methods development

Endorsed and used by over 70 organizations

- Consistent with DHHS sister agencies
 - Conceptually similar to AHRQ model
 - Supported by parts of CDC for healthcare recommendations

- Confidence Rating (human and animal data separately)
 - Indicates confidence that findings from the body of evidence reflects the true relationship between exposure to a substance and an effect
 - Initial Confidence
 - On an outcome basis
 - Determined by key study design features

Initial Confidence

High

Moderate

Low

Very Low

Key Features

- Controlled exposure
- Exposure prior to outcome
- Individual outcome data
- Comparison group used

Reflect the ability of study design to address confidence that exposure preceded and was associated with outcome

Example:

- Well conducted experimental studies will have all 4 key features
- Therefore "High" initial confidence

- Confidence Rating (human and animal data separately)
 - Indicates confidence that findings from the body of evidence reflects the true relationship between exposure to a substance and an effect
 - Initial Confidence
 - Factors Decreasing Confidence

Are there issues that would DECREASE confidence that findings reflect the true relationship between exposure and effects?

Moderate

Example: outcome is indirect measure or "upstream indicator"

 Decrease confidence from "High" to "Moderate"

- Confidence Rating (human and animal data separately)
 - Indicates confidence that findings from the body of evidence reflects the true relationship between exposure to a substance and an effect
 - Initial Confidence
 - Factors Decreasing Confidence
 - Factors Increasing Confidence

Initial Confidence

High

* Risk of Bias

* Unexplained Inconsistency

Low

Very Low

Publication Bias

Factors Increasing Confidence

- Large Magnitude of Effect
- Dose Response
- All Plausible Confounding
- Consistency
- Other

Are there issues that INCREASE confidence that findings reflect the true relationship between exposure and effects?

Moderate

Example: no issues

No increase in confidence

Step 5 Schematic: Adaptations to Address Breadth, of Data Relevant for Environmental Health Questions

Initial confidence set by study design features in OHAT Approach (stratifies observational studies)

Initial Confidence by Key Features of Study Design	Factors Decreasing Confidence	Factors Increasing Confidence	Confidence in the Body of Evidence
High (++++) 4 Features Features	Risk of BiasUnexplained	 Large Magnitude of Effect Dose Response 	High (++++)
Moderate (+++) 3 Features • Controlled exposure • Exposure prior to outcome	InconsistencyIndirectnessImprecision	 All Plausible Confounding Studies report an effect and residual confounding is toward null Studies report no effect and residual confounding is away from null 	Moderate (+++)
Low (++) 2 Features • Individual outcome data • Compariso	Publication Bias	 Consistency Across animal models or species Across dissimilar populations 	Low (++)
	ed consistency eadth of data	 Across study design types Other e.g., particularly rare outcomes 	Very Low (+)

Example Guidance in Protocols:When to Downgrade for Unexplained Inconsistency

^{*}protocol also includes guidance on when we might conduct a quantitative data synthesis

Example Guidance in Protocols:When to Downgrade for Unexplained Inconsistency

Table 15. Factors to consider when considering consistency of results

^{*}protocol also includes guidance on when we might conduct a quantitative data synthesis

Example Guidance in Protocols:When to Upgrade for Dose Response Gradient

Example Guidance in Protocols: When to Upgrade for Dose Response Gradient

Table 19. Conceptual examples of upgrade decisions for evidence of dose response gradient

Reaching Final Confidence Conclusions on Human and Animal Studies

 Conclusions are based on the evidence with the highest confidence rating when considering across study designs and multiple outcomes

Across biologically-related outcomes

- First: rate confidence in individual outcomes
- Then: re-evaluate confidence conclusion for combined outcomes
- The overall confidence conclusion for a combined outcome can differ from (e.g., be higher than) the individual outcome ratings

Example:

Blood Pressure Cardiovascular disease Cardiovascular mortality

• Note: If body of evidence has "Very Low" confidence, it is not used to develop hazard ID conclusions in steps 6 and 7

Confidence in Other Relevant Studies: Assessment of Biological Plausibility

Factors considered when evaluating the support for biological plausibility provided by *in vitro*, cellular, genomic, or mode of action data

Strong Support¹

Weak Support

- Relevance of biological process or pathway to human health
- Consistency
- Relevance of concentration

Factors considered parallel elements used to evaluate confidence in the other data streams

- Potency
- Dose response
- Publication bias

A conclusion of "strong" support for biological plausibility requires that most elements are met

Step 6: Translate Confidence Ratings into Level of Evidence for Health Effects

- Level of evidence for health effects conclusions reflect
 - The overall confidence in the association between exposure to a substance and a given outcome, and
 - The direction of the effect (toxicity or no toxicity)

Note: descriptors are applied separately to human and experimental animal evidence

Step 7: Integrate Evidence to Develop Hazard Identification Conclusions

- Integrate evidence by combining evidence streams to reach one of four overall hazard identification conclusions
 - Known to be a hazard to humans
 - Presumed to be a hazard to humans
 - Suspected to be a hazard to humans
 - Not classifiable to be a hazard to humans
- Two part process for integrating the evidence
 - Consider human evidence and animal evidence together
 - Consider impact of other relevant data
 - e.g., mechanistic, in vitro, or upstream indicator data

Integrate Evidence to Develop Hazard ID Conclusions

Assessment of Biological Plausibility Provided by Other Relevant Studies: PFOA/PFOS and Immunotoxicity

- Consider upgrading the hazard ID
 If other relevant data provide strong support for biological plausibility of the relationship between exposure and the health effect
 - To provide support, the mechanistic or in vitro data must support biological plausibility of observed immune outcomes from human epidemiology or in vivo animal studies
 - It is also envisioned that strong evidence for a relevant biological process from mechanistic or *in vitro* data could result in a conclusion of "suspected" in the absence of human epidemiology or *in vivo* animal data

Assessment of Biological Plausibility Provided by Other Relevant Studies: PFOA/PFOS and Immunotoxicity

Factors considered when evaluating the support for biological plausibility provided by *in vitro*, cellular, genomic, or mode of action data

More detail and examples provided in the protocol

Strong Support¹

- Relevance of biological process or pathway to human health generally accepted as relevant (e.g., myelotoxicity or bone marrow toxicity)
- **Consistency** consistency across multiple studies (preferably in more than 2 in different model systems for the same biological pathway)
- Relevance of concentration
 physiologically relevant or "low" concentration effects (e.g., mean of 3-5ng/ml PFOA and 9–30 ng/ml PFOS in the US population 1999-2010 (CDC 2012) range of 17-5100 ng/ml PFOA and 37-3490 ng/ml PFOS in occupationally exposed adults)
- Potency magnitude of response
- Dose response displays expected dose
- Publication bias undetected

Consistency still applies in absence of *in vivo* data, analogous to other data streams

Consistency

- Within context of observed in vivo immune outcomes
 - IgE supports sensitization
 - IgE does not support NK
- Stronger if data provide information on multiple steps along the relevant biological pathway
- Also applies to repeatability within the same assay across studies

Causality Considerations in draft OHAT Approach

Hill Considerations	Consideration in the OHAT Approach
Strength	 upgrading the confidence in the body of evidence for large magnitude of effect downgrading confidence for imprecision
Consistency	 upgrading confidence in the body of evidence for consistency across study types, consistency across dissimilar populations consistency across animal species or models integrating the body of evidence among human, animal, and other relevant data downgrading confidence in the body of evidence for unexplained inconsistency
Temporality	• the <i>initial confidence ratings</i> by study design, for example experimental studies are rated "High" because of the increased confidence that exposure preceded outcome
Biological gradient	• upgrading the confidence in the body of evidence for a <i>dose-response</i> relationship
Biological plausibility	 in examining non monotonic dose-response relationships in developing confidence conclusions across biologically related outcomes other relevant data that inform plausibility are considered in integrating the body of evidence downgrading the confidence in the body of evidence for indirectness
Experimental evidence	 the initial confidence ratings by study design downgrading for risk of bias

Next Steps

- Framework is currently available for public comment
 - Released publically February 25, 2013
 - For more files and details see http://ntp.niehs.nih.gov/go/38673
 - Public comment period ends <u>June 11, 2013</u>
- Two case studies to assess and refine methods
 - Protocols illustrate the application of this framework
 - BPA exposure and obesity
 - PFOA or PFOS exposure and immunotoxicity
 - Released publically April 9, 2013
- Careful consideration of comments from public and at NTP Board of Scientific Councilors Meeting June 25, 2013
- Release updated guidance
 - Expect to be updated periodically, e.g., new best practices

Acknowledgements

Office of Health Assessment and Translation

- Abee Boyles
- Kembra Howdeshell
- Andrew Rooney, Deputy Director
- Michael Shelby
- Kyla Taylor
- Kristina Thayer, Director
- Vickie Walker

Office of Liaison, Policy and Review

- Mary Wolfe, Director
- Lori White

Approach Technical Advisors and Experts

- Lisa Bero, Director, San Francisco Branch, United States Cochrane Center at UC San Francisco
- Gordon Guyatt, Co-chair, GRADE Working Group, McMaster University
- Malcolm Macleod, CAMARADES Centre, University of Edinburgh
- Karen Robinson, Co-Director, Evidence-Based Practice Center, The Johns Hopkins Bloomberg School of Public Health
- Holger Schünemann, Co-chair, GRADE Working Group, McMaster University
- Tracey Woodruff, Director, Program on Reproductive Health and the Environment, UCSF

NTP BSC Working Group

- Lynn Goldman, Chair, Dean, School of Public Health and Health Services, George Washington University, Washington, DC
- Reeder Sams, Vice-chair, Acting Deputy Director, National Center for Environmental Assessment/RTP Division, USEPA
- Lisa Bero, Director, San Francisco Branch, United States Cochrane Center at UC San Francisco
- Edward Carney, Senior Science Leader, Mammalian Toxicology, Dow Chemical Company
- David Dorman, Professor, North Carolina State University
- Elaine Faustman, Director, Institute for Risk Analysis and Risk Communication, University of Washington
- Dale Hattis, Research Professor, George Perkins Marsh Institute, Clark University
- Malcolm Macleod, CAMARADES Centre, University of Edinburgh
- Tracey Woodruff, Director, Program on Reproductive Health and the Environment, UCSF
- Lauren Zeise, Chief, Reproductive and Cancer Hazard Assessment Branch, OEHHA, California EPA

Protocol Technical Advisors

Very Low (+)

data

Very Low (+)

≤1 Features

Comparison

group used

Bias

· Across dissimilar populations

e.g., particularly rare outcomes

· Across study design types

No effect

No effect

(++) Moderate =

health effect

Inadequate

Inadequate

Extra Slides

Example Guidance in Protocols:When to Downgrade for Indirectness

Table 15. Guidance for downgrading human studies for directness					
Health		Exposure	Time between exposure	Overall	
outcomes		scenario	and outcome assessment	downgrade	
primary	0	0	0	0	
secondary	-1	1 0 0		-1	
0 = no downgrade -1 = one downgrade -2 two downgrade					

Downgrade for secondary outcomes

Example Guidance in Protocols: When to Downgrade for Indirectness PFOA / PFOS Exposure and Immunotoxicity

Table 16. Guidance for downgrading animal studies for directness								
Animal model		Health outcomes		Route of administration		Time between treatment and	Overall downgrade	
					Ro	ute of admini	stration	
Mammalian	0	primary	0	oral, sc injection, dermal, inhalation	0	0	0	
				intraperitoneal injection	-1	0	-1	
		secondary	-1	oral, injection, dermal, inhalation	0	0	-1	
				Intraperitoneal (ip) injection	-1	0	-2	
Non-	-1	primary	0	oral, sc injection, dermal, inhalation	0	0	-1	
mammalian				ip, water for aquatic species	-1	0	-2	
vertebrates		secondary	-1	Downgrade for Indirectness				
Invertebrates -2 primary Model (mammal=0, vertebrate -1, invertebrate					tebrate -2)			
		secondary	-1	Health outcome (primary = 0, secondary -1)				

0 = no downgrade, -1 = one downgrade, -2 two downgrade

sc = subcutaneous, ip = intraperitoneal

Key Study Design Features for Initial Confidence

1. Exposure to the substance is controlled

Experimental studies can largely eliminate confounding by randomizing allocation of exposure

2. Exposure assessment represents exposures occurring prior to the development of the outcome

 Supports causal pathway and if present, it is unlikely that association is the result of reverse causation

3. Outcome is assessed on the individual level

(i.e., not population aggregate data)

 Without individual-level information on outcomes, a study cannot control for additional confounding variables ("ecologic fallacy")

4. Comparison group is used within the study

(e.g., not case reports)

Example Details Included in Summary Tables

Table 6 from PFOA/PFOS Exposure and Immunotoxicity Protocol						
Reference, Stud	dy Design & Population	Health Outcome	Exposure	Statistical Analysis	Results	
(Carwile and M	Nichels 2011)	Diagnostic and prevalence in tota	Exposure assessment	obesity & overweig	adjOR (95% CI)	
Study Design: o	cross-sectional	cohort:	urine (μg/g creatinine γ	polytomous regression	obesity	
Adults who par	rticipated in the 2003/04 an 2005/06		ng/ml and creatinine as	elevated WC:	Q2 vs Q1: 1.85 (1.2,2.79)	
National Health	h and Nutrition Examination Jurvey	obesity: BMI ≥ 30 (n=932, 34.3%)	adjustment variable)	logistic regression	Q3 vs Q1: 1.60 (1.0 2.44)	
(NHANES) and a	a spot urine sample analysed or BPA.	overweight: 25 ≤ BMI < 30 (n=864,	measured by online SPE-	Adjustment factors:	Q4 vs Q1: 1.76 (1.06 2.94)	
N: 2747		31.8%)	HPLC-MS/MS (Ye 2005)	sex, age, race, urinary catinine,	overweight	
Location: US, N	NHANES national survey	elevated waist circumference (WC):	Exposure levels:	education, smoking	Q2 vs Q1: 1.66 (1.21,2 27)	
Sex (% male):	♂♀(49.6%)	>102 cm in ♂ or ≥ 88 cm in ♀	2.05 μg/g creatinine	Statistical power: "appears to be	Q3 vs Q1: 1.26 (0.85,1.7)	
Sampling time	frame: 2003-2006	(n=1330, 50%)	reometric mean), 1.18-3.33	adequately powered" bas d on	Q4 vs Q1: 1.31 (0.80,2.1 !)	
Age: 18-74 year	irs		(15-75th percentile)	ability to detect an OR of 1 5 with	elevated WC	
Exclusions: pre	gnant women, participants with	*BMI = body mass index (kg/m²)	Q. ≤1.1 ng/ml	80% power using Q1 prevalence	Q2 vs Q1: 1.62 (1.11,2.36	
77	BPA, creatine, BMI, or covariate da		Q2 1.2-2.3 ng/ml	of 40.4% obesity, 44.4%	Q3 vs Q1: 1.39 (1.02,1.90)	
	e: NIH National Research Service (NR. 4)		Q3: .4-4.6 ng/ml	verweight, and 46% elevated	Q4 vs Q1: 1.58 (1.03,2.42)	
	t of interest: not reported		Q4: > 1.7 ng/ml	V C		
	er as "appears to be adequately powerd"		ered (sample size is 75% to <100%	6 of ecommended), "underpowered	"	
	severely underpowered (sample size is <	0% required)			Results	
RISK OF BIAS A					Results	
Risk of bias res	sponse options for individual items: shou	we delete domains from this table?				
Bias Domain	<i>'</i>	Criterion		Re	<u>L</u>	
Selection	Was adi inistered dose or exposure lev	el dequately randomized?	n/a not a	pplicable	Analysis 📮	
	Was allo ation to study groups adequate	rely oncealed?	n/a not a	pplicable	Allalysis	
	Were the comparison groups appropria	te?	++ yes, i	pased on quart	$\overline{}$	
Confounding	Does the study design or analysis accou	nt for mportant confounding and modify	ing variables? ++ yes (s	sex, age, race		
Comounting	157 106 9	2 20 2	adjus	tment for nut	osure	
	Did researchers adjust or control for ot	ner exp sures that are anticipated to bias	results? + no, b	ut not conside	tudies	
Performance	Were experimental conditions identical	across s udy groups?				
	Did deviation from the study protocol	impact the results?		ealth Outcor	mo	
	Were the research personnel and huma	in subjects blinded to the study group dur	ing the study?	eaith Outcom	IIE	
Attrition	Were outcome data incom				or any analysis)	
Detection	Were the outcome assesso	ference, Study	, Design an	d Population	sessment	
	Were confounding variable	iciciico, otaaj		a i opulatioi		
	Can we be co		++ ves.	NHANES methods are considered "go	id standard" for urinary BPA	
		t Dies		used standard diagnostic criteria		
Selective	RISK O	I RIAS		primary outcomes discussed in metho	ods were presented results	
Reporting	Were all mea			on with adequate level of detail for d	· · · · · · · · · · · · · · · · · · ·	
Other	Were there any other potential threats	to internal validity (e.g., inappropriate sta				
(0.000000000000000000000000000000000000						
RISK OF BIAS			1 st Tier for	risk of bias		
	sponse options for individual items:					
++ definite	ely low risk of bias					

probably low risk of bias probably high risk of bias definitely high risk of bias

not applicable

Example Risk of Bias Details in Summary Table

Table 6 from PFOA/PFOS

Reference, Study Design & Population

(Carwile and Michels 2011) Study Design: cross-sectional

Adults who participated in the 2003/04 and 2 National Health and Nutrition Examination St (NHANES) and a spot urine sample analysed to

N: 2747

Location: US, NHANES national survey

Sex (% male): 3♀(49.6%) Sampling time frame: 2003-2006

Age: 18-74 years

Exclusions: pregnant women, part cipants w missing urinary BPA, creatine, PVII, or covari Funding Source: NIH Nationa Research Serv Author conflict of interest not reported

statistical power as "ap cars to be adequatel required), or "severe underpowered (sample s

Risk of Bias

- Rating/answer to applicable questions
- **Answers justified with text from study**
- Hypothetical example on confounding:

"yes (sex, age, race urinary creatinine, education, smoking), but no adjustment for nutritional quality"

RISK OF BIAS ASSESSMENT					
Risk of bias response options for individual items: should we delete domains from this table?					
Bias Domain	Criterion		Response		
Selection	Was administered dose or exposure level adequately randomized?	n/a	not applicable		
	Was allocation to study groups adequately concealed?		not applicable		
	Were the comparison groups appropriate?	++	yes, based on quartiles of exposure		
Confounding	Does the study design or analysis account for important confounding and modifying variables?		yes (sex, age, race, urinary creatinine, education, smoking), but no		
Comountaing	boes the study design of analysis account for important comounting and mountying variables:		adjustment for nutritional quality, e.g., soda consumption		
	Did researchers adjust or control for other exposures that are anticipated to bias results?	+	no, but not considered to present risk of bias in general population studies		
Performance	Were experimental conditions identical across study groups?		not applicable		
Did deviations from the study protocol impact the results?		+	no deviations reported		
	Were the research personnel and human subjects blinded to the study group during the study?	n/a	not applicable		
Attrition	Ware outcome data incomplete due to attrition or evaluaion from analysis?	4	not considered a risk of bias, excluded observations (≤ 87 for any analysis)		
Attrition	Were outcome data incomplete due to attrition or exclusion from analysis?		based on missing BMI or covariate data		
Detection	Were the outcome assessors blinded to study group or exposure level?	++	yes, BPA levels not known at time of outcome assessment		
	Were confounding variables assessed consistently across groups using valid and reliable measures?	++	yes, used standard NHANES methods		
	Can we be confident in the exposure characterization?	++	yes, NHANES methods are considered "gold standard" for urinary BPA		
	Can we be confident in the outcome assessment?	++	yes, used standard diagnostic criteria		
Selective	Were all measured outcomes reported?	++	yes, primary outcomes discussed in methods were presented results		
Reporting	were all measured outcomes reported:		section with adequate level of detail for data extraction		
Other	Were there any other potential threats to internal validity (e.g., inappropriate statistical methods)?	++	none identified		

RISK OF BIAS

Risk of bias response options for individual items: definitely low risk of bias probably low risk of bias probably high risk of bias definitely high risk of bias not applicable

1st Tier for risk of bias